

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SOFTWARE REUSE IN THE
NAVAL OPEN ARCHITECTURE

by

Carlus A. Greathouse

March 2008

 Thesis Advisor: James B. Michael
 Thesis Co-Advisor: Man-Tak Shing

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE : Software Reuse in the Naval Open Architecture
6. AUTHOR(S) Carlus A. Greathouse

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis describes a web-based continuous learning module (CLM) for use in introducing
members of the Department of the Navy’s acquisition community to software reuse in the context of Naval
Open Architecture. The CLM introduces the student to principles for effective software reuse, explains the
unique challenges of software reuse, discusses software reuse within the context of the Naval Open
Architecture under the current Department of Defense and DoN policy and guidance, provides a strategy
for successful software reuse, and introduces the student to the Software Hardware Asset Reuse
Enterprise (SHARE) repository established by the Navy’s Open Architecture (OA) program.

15. NUMBER OF
PAGES

95

14. SUBJECT TERMS Software Reuse, Naval Open Architecture, SHARE,

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SOFTWARE REUSE IN THE NAVAL OPEN ARCHITECTURE

Carlus A. Greathouse
Lieutenant, United States Navy

B.S., University of Memphis, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2008

Author: Carlus A. Greathouse

Approved by: James B. Michael
Thesis Advisor

Man-Tak Shing
Thesis Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis describes a web-based continuous learning module (CLM) for

use in introducing members of the Department of the Navy’s acquisition

community to software reuse in the context of Naval Open Architecture. The CLM

introduces the student to principles for effective software reuse, explains the

unique challenges of software reuse, discusses software reuse within the context

of the Naval Open Architecture under the current Department of Defense and

DoN policy and guidance, provides a strategy for successful software reuse, and

introduces the student to the Software Hardware Asset Reuse Enterprise

(SHARE) repository established by the Navy’s Open Architecture (OA) program.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PROBLEM STATEMENT... 1

II. BACKGROUND.. 3
A. INTRODUCTION.. 3
B. SOFTWARE REUSE.. 3
C. OPEN ARCHITECTURE .. 6
D. SOFTWARE, HARDWARE ASSET REUSE ENTERPRISE

(SHARE) .. 8
E. SUMMARY... 9

III. WEB-BASED CONTINUOUS LEARNING MODULE (CLM)........................ 11
A. INTRODUCTION.. 11
B. MODULE ONE ... 11
C. MODULE TWO .. 13
D. MODULE THREE... 14
E. MODULE FOUR... 15
F. MODULE FIVE... 16

IV. RECOMMENDATIONS AND CONCLUSIONS... 19
A. THE FUTURE... 19

APPENDIX A. – SHARE REPOSITORY COMPONENT SPECIFICATION:
NEEDS ASSESSMENT .. 21

APPENDIX B– SOFTWARE REUSE IN THE NAVAL OPEN ARCHITECTURE.... 39

LIST OF REFERENCES.. 75

INITIAL DISTRIBUTION LIST ... 77

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Reuse Backdrop. Adapted from I. Sommerville, Software
Engineering, Upper Saddle River, NJ: Addison Wesley, 7th ed.,
2004. .. 5

Figure 2. Navigation and Layout.. 12

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS

API Application Programming Interfaces

COTS Commercial of the Shelf

GUI Graphical User Interface

IDS Interface Design Specification

LCS Littoral Combat System

NESI Net-centric Enterprise Solutions for Interoperability

NPS Naval Postgraduate School

NOA Naval Open Architecture

OA Open Architecture

PEO IWS Program Executive Officer, Integrated Warfare Systems

PEO C4I Program Executive Officer, Command, Control,
Communications, Computers and Intelligence

PIDS Prime Item Development Specification

ReSEARCH Requirements Search Engine

SSDS Ship Self Defense System

SRS Software Requirements Specifications

SSS System/Subsystem Specifications

SHARE Software, Hardware Asset Reuse Enterprise

TSCEI Total Ship Computing Environmental Infrastructure

UML Unified Modeling Language

XML Extensible Markup Language

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

This thesis describes a web-based continuous learning module (CLM) for

use in introducing members of the Department of the Navy’s acquisition

community to software reuse in the context of Naval Open Architecture. The CLM

introduces the student to principles for effective software reuse, explains the

unique challenges of software reuse, discusses software reuse within the context

of the Naval Open Architecture under the current Department of Defense and

DoN policy and guidance, provides a strategy for successful software reuse, and

introduces the student to the Software Hardware Asset Reuse Enterprise

(SHARE) repository established by the Navy’s Open Architecture (OA) program.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The road of life twists and turns and no two directions are ever the
same. Yet our lessons come from the journey, not the destination.

Don Williams, Jr.

I owe a debt of gratitude to the many people who played a role in the

successful completion of this thesis.

First, I have to give honor to God. Without Him life is not worth living. To

my friends, coworkers, mentors, and family members who have endured the

pains of this thesis work alongside me, I extend my thanks and share the pride of

a completed work with them.

I would like to give special thanks to my parents and my true friends

(Derrick, Charles, Calvin, Shawn and Janet). Your support has contributed

greatly to my success. Thank you for your understanding listening ear and

endless words of encouragement.

Finally, to my advisors, Professors Michael and Shing, SSC Charleston

military staff and SSC Charleston Navigation department, thank you for working

with me through some very challenging situations to get this thesis finished.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT

The theory and practice of software reuse continuously evolves, but one

can ask: What are the factors and principles of successful software reuse? The

Department of the Navy (DoN) needs to leverage the use of software reuse in its

quest to deliver software-intensive systems on schedule, within budget, and with

the necessary functionality.

However, before the DoN can reap the benefits of software reuse, the

Navy must create, promote and positively reinforce a software engineering reuse

environment. How does the DoN ensure that its investment in reuse will provide

positive dividends?

The Program Executive Office for Integrated Warfare Systems (PEO IWS)

identified considers the reuse of software applications as one of the key enablers

for Naval Open Architecture to support of the development of National Security

Systems that are modular, interoperable, and affordable to upgrade1. The

defense community has long recognized the potential benefits that software

reuse can generate, as evidenced for instance in the well-known article by Doug

McIlroy that appeared in 19682. Today large-scale software reuse across the

industry remains elusive. Despite many setbacks, software developers now have

a better understanding of the factors and principles for successful software

reuse, as evident by an ever growing number of reports of successful reuse

projects3,4. In order to increase the likelihood that the DoN will benefit from

1 N. Guertin, Presentation to the DOD Open Technology Conference, Arlington, VA, March

14, 2007.
2 M. D. McIlroy, “Mass produced software components,” in Naur, P. and Randell, B., eds.,

Report on the NATO Conference on Software Engineering, NATO Scientific Affairs Division,
Brussels, Belgium, 1968, pp. 138-150.

3 M. L. Griss and A. Wosser, “Making Reuse Work at Hewlett-Packard,” IEEE Software, Jan.
1995, pp. 105-107.

 2

software reuse, Navy and Marine Corps acquisition professionals need to learn

about software reuse principles and practices, in addition to learning about the

linkage between software reuse and Naval Open Architecture.

This thesis describes a web-based continuous learning module (CLM) for

use in introducing members of the Department of the Navy’s acquisition

community to software reuse in the context of Naval Open Architecture. The CLM

introduces the student to principles for effective software reuse, explains the

unique challenges of software reuse and discusses software reuse within the

context of the Naval Open Architecture under the current Department of Defense

and DoN policy and guidance. The CLM also provides a strategy for successful

software reuse and introduces the student to the Software Hardware Asset

Reuse Enterprise (SHARE) repository established by the Navy’s Open

Architecture (OA) program.

4 A. Tomer, L. Goldin, T. Kuflik, E. Kimchi, and S. R. Schach, “Evaluating Software Reuse

Alternatives: A Model and its Application to an Industrial Case Study,” IEEE Transactions on
Software Engineering, 30, 9 Sept. 2004, pp. 601-612.

 3

II. BACKGROUND

A. INTRODUCTION

Software reuse promises huge returns in productivity, better quality, and a

decrease in time to market for products. Software reuse is a quickly developing

underlying pillar of the Naval Open Architecture Enterprise.

B. SOFTWARE REUSE

All types of software-development artifacts (e.g., use cases, requirements,

designs, architectures, patterns, test cases, code, documentation, etc.) can

potentially be reused if they are designed for reuse from the start. Hands-on

experience has led the industry to the belief that substantial reuse can only

happen in two areas: opportunistic and systematic. George Santayana’s

statement, “Those who cannot remember the past are condemned to repeat it”,

may not be completely true. The past can have triumphant moments as well. The

trick is to be aware of the victorious pieces from the past to draw from for future

events. This mindset applies to software engineering. Software engineering is an

expanding field that has changed direction and priorities very rapidly over the last

decade. Exhaustive studies and numerous projects have produced and positive

results that are neither repeated nor shared across system development.

Software reuse has its roots in computer programming, with the

development of software libraries containing subroutines, functions, and other

reusable units of software. Today, software reuse includes the spectrum of

system artifacts, including such things as requirements and software patterns.

So far in the twenty-first century, the focus has been rapid application

development, fastest time to market for updates and keeping up with the Internet

technology wars. The last fifty years have seen tremendous changes in software

engineering. The late 1990s saw a shift from processes, tools, documentation,

 4

negotiations and plans to individuals, collaborations, working software, and

responding to change. The enterprise that can get a product or service to market

first wins. Organizations have moved away from the traditional waterfall models

to spiral, evolutionary, or iterative process models. Such models use the project’s

risk to determine how much engineering is enough. Organizations have also

turned to open source development as another means of speeding up time to

market and getting expansion ideas for future code capability. This century has

also seen an exponential increase in the use of software by non-programmers.

The increased usage has forced programmers to create much better Graphical

User Interfaces (GUI). This also opened the door to more in-depth studies on

Human Computer Interaction (HCI).

Software reuse is a means to achieve improvement in overall software

production. A high-quality software reuse process can contribute to improved

productivity, quality, and dependability, in addition to aiding the acquisition

professional in better managing the schedule, cost, and performance of a

program or project. An initial investment is necessary, which can be relatively

large in some cases, to establish a software reuse program. However, that

investment can pay for itself over time. In short, the development of a reuse

program and the reuse process employed in that program can help both to

reduce risk in legacy and new system developments.

According to Estublier and Vega, “Reuse is not a goal in itself; it aims at

speeding up and decreasing maintenance cost.”5 They also suggest that “a really

reusable component has a significant cost; therefore, to be cost effective, a

reusable component must be widely REUSED.”6 In some broader definitions,

reuse is the use of artifacts or components from existing systems to build new

5 J. Estublier and G. Vega, “Reuse and variability in large scale applications,” in Proceedings

of the 10th European Software Engineering Conference, ACM, Lisbon, Portugal, Sept. 2005, pp.
316-325.

6 J. Estublier and G. Vega, “Reuse and variability in large scale applications,” in Proceedings
of the 10th European Software Engineering Conference, ACM, Lisbon, Portugal, Sept. 2005, pp.
316-325.

 5

ones in order to achieve the advantages of reuse. The reuse backdrop

encompasses a range of possible reuse techniques (see Figure 1). Reuse is the

use of existing software to build new software. Variations in the definitions range

from adding words like “software knowledge” and expanding the reuse umbrella

to include all aspects of a software development, such as reusing a particular

software process.

Figure 1. Reuse Backdrop. Adapted from I. Sommerville, Software
Engineering, Upper Saddle River, NJ: Addison Wesley, 7th ed., 2004.

The concept behind reuse is clear-cut. Reuse emphasizes strategies,

techniques and principles that enable developers to create new systems from

components in repositories. Furthermore, software reuse is of interest to the

Department of Defense because it is not practical for DoD to develop systems

from scratch—it is too costly and time-consuming to do so. Today’s acquisition

environment is one in which legacy systems and components are brought

together in new developments to meet the needs of the warfigther to achieve

transformation, that is, rapidly transitioning concepts and technologies to systems

deployed in the battlespace. According to a spokesperson from

Design
patterns

Component-based
development

Component
frameworks

Service-oriented
systems

COTS
integration

Application
product lines

Legacy system
wrapping

Program
libraries

Program
generators

Aspect-oriented
software

Configurable
applications

 6

ComponentSource, the concept behind software reuse is a simple yet powerful

one. “Reuse before you buy. Buy before you build. And if you must build anew,

learn how to share.”7

Software reuse is divided into two types: opportunistic and systematic.

Software salvage, euphemistically known as opportunistic reuse, is the

unplanned reuse of system artifacts not originally designed with reuse in mind.

In contrast, systematic reuse is deliberate in the sense that the artifacts are

designed to be reused. The latter is the preferred type of reuse.

C. OPEN ARCHITECTURE

PEO-IWS identifies software reuse as one of the key enablers for Naval

Open Architecture. As of today, large-scale industry-wide software reuse remains

elusive. Within the DoN many open architectures are coming into existence. The

issues involve determining the right contract language, obtaining access to reuse

libraries, and the age-old issues of upgrading legacy systems coupled in software

and hardware. Issues spill over into every aspect of the software development

process.

Open Architecture denotes an architecture whose specifications are

public. This includes officially approved standards as well as non-standard

architectures whose specifications are publicly available. The opposite of open is

closed or proprietary.

The great advantage of open architectures is that anyone can design add-

on products for it. By making architecture public, however, a manufacturer allows

others to duplicate its product. The Navy’s definition of Open Architecture (OA) is

an enterprise-wide, multifaceted strategy for acquiring and maintaining National

Security Systems through joint interoperable systems that adapt and exploit

open-system design principles and architectures. Fundamentals of the OA

7 M. Pepe, “Government Reduce, Reuse, Recycle Code.” CRN 23 July 2001.

 7

strategy include increasing opportunities for competition and innovation, enabling

rapidly fielded and upgradeable systems, and optimizing software asset reuse.

The Navy and Marine Corps have adopted OA as a way to reduce the

rising cost and increase the capabilities of Naval warfare systems and platforms.

Naval Open Architecture (NOA) allows for incorporating more COTS technology

in warfare systems and enabling reuse of software and related assets. More

importantly, OA will contribute to greater competition among system developers

through the use of open standards and standard, published interfaces.

The definition of OA has to be stated if the Government intends to procure

a system having open architecture designs and corresponding components. The

contracting department must have a basis by which to understand the sharing of

software and proprietary rights. It will also have to make a long list of demands

on the contractor. As part of this contract process, contractors will be required to

define, document, and follow an open systems approach for using modular

design, standards-based interfaces, and widely supported consensus-based

standards. Contractors will develop, maintain, and use an open system

management plan to demonstrate compliance. The proposed open system

management plan will be incorporated into the contract.

Beyond contractual language, there are standards by which code for

sharing and reuse should be written. The idea behind standards is really

facilitating open architecture and fast turn around of a capability. Code should be

designed using industry-standard formats. Code should develop and maintain an

architecture that incorporates appropriate considerations for portability,

maintainability, technology insertion, vendor independence, reusability,

scalability, interoperability, upgradeability, and long-term supportability. Code

should be developed through an architecture that is modular and use non-

proprietary or key Application Programming Interfaces (APIs). Code should be

documented to describe how the proposed system architecture took into account

the attempts to use non-proprietary or COTS wherever practicable. Code design

 8

should try to minimize inter-component dependencies to allow components to be

decoupled and reused, were appropriate, across various Naval programs and

platforms.

Development standards create a problem. The correct way to do business

is to go with the old military standards. The military standards however are very

costly for the contractors to produce, causing the contractors to pass on their risk

to the government in a contractual line item. The government needs contracts

that can alleviate some of the burden placed on contractors while still holding

them to some agreed upon standard.

The Navy should expect to expend resources to upgrade legacy systems

once the processes for reuse and open architecture achieve a certain level of

maturity, but the costs of the upgrades will conceivably be offset by the savings

from software sharing.

Naval Open Architecture must match or exceed the rapid evolution in

commercial technology. The delivery of new technologically advanced

capabilities across the entire family of warfighter systems or platforms must be

delivered both faster and cheaper if the military is to retain its superior warfighting

capabilities in the coming years. The current process takes a decade, cost

billions of dollars and only delivers in some cases minimal improvements in

warfighting capability.

D. SOFTWARE, HARDWARE ASSET REUSE ENTERPRISE (SHARE)

Software, Hardware Asset Reuse Enterprise (SHARE) repository is part of

the Navy’s Open Architecture (OA) approach. SHARE is a resource in

implementing NOA that aids in the cataloging and development of open

components that include reusable software applications. SHARE provides a

capability to search for, share, manage and maintain reusable assets. SHARE

has a card catalog and resource library. The card catalog is web-based and

 9

supports such actions as searching for code and sharing code. The resource

library currently only contains software for Navy Surface Domain programs.

E. SUMMARY

Software reuse has become a hot topic in all aspects of the software

community. A “software asset” is not simply another term for source code, but

rather is anything produced during software development and designed for

reuse. The DoD has seen its value and has incorporated it as part of a new

strategy to acquire weapon systems. When properly applied, reuse can produce

benefits, which include increased product quality and decreased product cost

and schedule. The greatest benefits come from a domain specific approach,

where a common set of reusable software assets act as a base for similar

products production. Software reuse has substantial upfront investments, but

when properly monitored can produce huge dividends.

The DoN recognizes the need for Open Architecture in system

development. With an ongoing war and mounting budget constraints, there exists

a need to produce software for the warfighter in an even more efficient and

effective manner. The DoD is moving away from each service having its own

special systems to accomplish missions. In the near future, each service will

draw from a pool of similar software designs for future capabilities within that

service. The Navy has delineated a specific set of OA core principles by which to

operate and drive its new OA endeavors.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. WEB-BASED CONTINUOUS LEARNING MODULE (CLM)

A. INTRODUCTION

Software Reuse is an underlying pillar of the Naval Open Architecture

Enterprise. Software reuse blends software and future capability. This approach

is gaining increasing use within commercial, defense industry and government

facilities as the most effective way to improve quality reduce time in getting new

products to the front lines and increase productivity. It is important for Navy and

Marine Corps acquisition professionals and program managers to understand

these principles in order to make the correct choices and reap the benefit of

software application reuse in the Naval Open Architecture. We developed this

web-based continuous learning module (CLM) to teach DoN personnel about

software reuse in Naval Open Architecture. The CLM introduces students to the

principles for effective software reuse, explains the unique challenges of software

reuse and discusses software reuse within the context of the Naval Open

Architecture under the current DoD and DoN policy and guidance. The module

also provides a strategy for successful software reuse and introduces students to

the Software Hardware Asset Reuse Enterprise (SHARE) repository established

by the Navy’s Open Architecture (OA) program. The CLM contains five modules,

with periodic review questions through out the course. The CLM also contains an

end-of-course review and a post-training examination. The average cumulative

time for course completion is two hours. Upon completion of this module, you will

receive two Continuous Learning Points (CLP).

B. MODULE ONE

The first module discusses all five modules in general. In order to access

all the features of the CLM, your computer must meet specific system

requirements and have all the necessary software applications such as Windows

Media Player and Flash Player. The computer’s monitor requires the appropriate

 12

screen settings to ensure all components from the CLM are visible. There will be

help links embedded in the courseware to assist the user in correcting problems

associated with viewing the course material. If the student cannot correct the

problems, they will seek help from a DoD IT professional. There are consistent

features that are available to you throughout the CLM (See Figure 2).

Figure 2. Navigation and Layout

The rest of the course will contain four lessons:

• Introduction to Software Reuse

• Principles of Effective Software Reuse

• Naval Open Architecture and Software Reuse

• Implementation Issues

Each lesson will have its own lesson objectives. Additionally, each module

contains Knowledge Reviews throughout. These Knowledge Reviews are

designed to prepare you for the end of module examination. Knowledge reviews

are not graded, you may take them as many times as you would like. The exams,

on the other hand, require you to demonstrate mastery of the learning objectives

covered by its associated topics. The last two module features are the Summary

slide and Exam. The summary slide reviews the items that you should have

covered and the exam will cover questions that were presented somewhere in

 13

the lesson. To complete this module successfully, you must pass all exams with

a score of 100%. The CLMs allow for unlimited test attempts until a 100% score

is obtained. There is no instructor interaction. To receive credit for this module

you must complete:

• Each section of the module

• Each test
• The end of module survey

Upon completion of the CLM the student will download a certificate verifying his

or her completion of the module.

C. MODULE TWO

The first lesson of the CLM is Introduction to Software Reuse. The focus

of this lesson is to present an overview Software Reuse. After successful

completion of this lesson, students will be able to:

• Define Software Reuse

• Describe Types of Software Reuse

• Describe Benefits and Potential Show Stoppers of Software Reuse

Software reuse is the process of creating software systems from

predefined software components. Software reuse is subdivided into four types:

Opportunistic, Systematic, Domain-Oriented and Strategy Driven. Opportunistic

Reuse can be thought of as ad hoc or an individual effort where individual effort

happens by chance. Systematic Reuse is planned or a corporate-level effort

where corporate level is a repeatable process with supporting infrastructure.

Domain-oriented Reuse centers around domain analysis, component

development and component repository support. Strategy Driven focuses more

on using software from a business prospective to cut cost, improve quality and

create new business opportunities.

Software reuse has many benefits. Software reuse can reduce

development cost, increase dependability of the developed system, and reduce

 14

process risks. Software engineers do not have reinvent the wheel each time that

a new project comes around; instead they can concentrate their efforts on

problem-solving activities. Component interfaces are more standardized further

driving down uncertainty and cost. It also adds a degree speed by avoiding

customized development.

With any benefits, come potential showstoppers. Software Reuse can turn

costly if extensive effort is required in adapting the reusable code. Maintaining

and improving a component library will also incur cost if not done properly. Lack

of tool support will cause difficultly in searching for the correct components and

the integration of those components into a heterogeneous component library.

Specialists tend to want to rewrite components to make them better verses using

what is in the library.

D. MODULE THREE

The second lesson in the CLM discusses Naval Open Architecture and

Software Reuse. The focus of this lesson is to present an overview of the

DoD/DoN effort in Software Reuse. Students who successfully complete this

module will be able to:

• Define Naval Open Architecture

• Summarize the Software Reuse policies from Department of Defense

Open architecture is defined as a type of computer or software

architecture that is considered public. The opposite of closed or proprietary, it

includes both industry standard and privately designed architectures that are

made public. It allows users to see the inner workings of architecture, and allows

for adding, upgrading, and swapping of components.

The Naval Open Architecture (NOA) is a multi-faceted strategy providing a

framework for developing joint, interoperable systems that adapt and exploit

open system design principles and architectures. It is a System Reuse

framework that includes a set of principles, processes, and best practices. The

 15

goals of NOA are to optimize total system performance, reduce difficulties in

system development and upgrades, minimize total ownership costs and rapidly

field affordable, interoperable systems. NOA will accomplish its goals by

creating more opportunities for competition, the use of non-proprietary standards

for internal interfaces, modular architectures to allow for affordable

interoperability and to accommodate changing technology and requirements and

finally through software reuse. Naval Open Architecture is a business process

renovation, not just a changing software development practices as in Open

Architecture. NOA emphasizes on the use of business drivers to produce better

and less expensive software.

With the onset of the Naval Open Architecture initiative, there must be

governing policies and procedures. Below is a list of the Software Reuse policies

from Department of Defense:

• 12 May 2003, DoD Directive (DoDD) 5000.1, “The Defense Acquisition
System”

• 5 Apr 2004, Under Secretary of Defense (Acquisition, Technology &
Logistics) Memorandum, “Amplifying DoDD 5000.1 Guidance
Regarding Modular Open Systems Approach (MOSA) Implementation”

• Assistant Secretary of the Navy (Research, Development &
Acquisition) (ASN [RD&A]), 5 Aug 2004, OA Policy Statement, “Naval
Open Architecture Scope and Responsibilities”

• Deputy Chief of Naval Operations (OPNAV) (Warfare Requirements
and Program) (N6/N7), 23 Dec 2005, “Requirement for Open
Architecture (OA) Implementation”

The above policies direct DoD to implement a Defense Acquisition System that

will be more Flexible, Responsive, Innovative, Disciplined, and Be Streamlined

and Effectively Managed.

E. MODULE FOUR

The third lesson in the CLM discusses Principles, Thinking, and

Requirements of Effective Reuse. The focus of this lesson is to present

 16

Principles for effective Software Reuse. Students who successfully complete this

module will be able to:

• Describe Effective Principles

• Describe Reuse Thinking

• Describe Reuse Requirements

Effective principles in software reuse are necessary. Principles are

governed through designing code with reuse in mind, which involves designing

software around good design and existing components. Software components for

reuse should be independent, reflect stable domain abstractions and provide

access to state through interface operations. Lastly, successful and safe reuse

must have a well documented design rationale and design assumptions for both

the system and the software design.

Effective principles can only be as effective as the thinking associated

therein. The key difference between reuse processes and conventional software

engineering processes is that for reuse, the customer’s requirements are

modified to take advantage of what is available for reuse. While the customer

may not get exactly what they want, the software should be available more

economical and in a shorter time.

Once the effective principles are institutionalized, concise requirements

can now be written. Requirements point to the appropriate reusable components.

Reusable components should be trustworthy and behave as specified in the

requirements. Components should also have associated documents to help the

code specialist understand them and adapt them to new application.

F. MODULE FIVE

The fourth and final lesson in the CLM discusses Implementing Software

Reuse. The focus of this lesson is to present ways to implement software reuse.

Students who successfully complete this module will be able to:

 17

• Understand the organizational and technological enablers

• Describe strategy to implement software reuse

• Understand the importance of reuse metrics

• Know how to use the SHARE repository

The first step in setting up a reuse program is to identify and develop the

enablers for Software Reuse. Enablers consist of Organizational and

Technological Enablers. Examples of Organizational enablers are culture,

structure and polices. Examples of Technological enables are COTS,

Component-based engineering and domain engineering.

The second step is to establish a strategy to gain acceptance and

institutionalization of Software Reuse. The goal is to maximize the benefits of

software reuse, taking into consideration resources, personnel, activities and

desired outcomes. An example of a strategy may contain the following or similar

steps:

• Initiate reuse program development

• Define reuse program

• Establish reuse adoption goals

• Analyze reuse adoption strategies

• Develop reuse action plan

• Implement and monitor reuse program

In summary, ensure that enablers are supported and that you are

designing for reuse. Document the software components and collect metrics

during the projects. There is not a “one size fits all” set of reuse metrics and

metrics can be misused.

One of the United States Navy’s initiatives and a resource in implementing

NOA is the Software, Hardware Asset Reuse Enterprise (SHARE) repository. It is

part of the Navy’s Open Architecture (OA) approach to developing open,

component that include reusable software applications as a core principle.

SHARE provides a capability for discovering, accessing, sharing, managing, and

 18

sustaining reusable assets. It has an asset library and a card catalog. Currently,

it contains only one type of software specific to surface ships. Please see

Appendix A for full details on the SHARE repository and its way ahead.

 19

IV. RECOMMENDATIONS AND CONCLUSIONS

A. THE FUTURE

In 2006 several policies and procedures were promulgated directing

actions be taken to move the DoN in the direction of an open architecture culture,

but there is no over-whelming evidence that the policies have been embodied or

taken hold in the development of Navy systems. This thesis describes a web-

based continuous learning module (CLM) for use in introducing members of the

Department of the Navy’s acquisition community to software reuse in the context

of Naval Open Architecture. It is likely that a portfolio of continuous learning

modules will be developed by the DoN, incorporating the CLM described here,

the Navy Reuse Enterprise.

One area of future work is to investigate how to promote the

organizational acceptance of software reuse. However, in the near term, the CLM

needs to be vetted by the Navy Program Executive Office for Open Architecture.

In addition, the Defense Acquisition University, which will host the CLM, needs to

verify module content, finalize the layout of the module, and update the DAU

catalog of online courses to reflect the availability of the module.

Each of the sub modules of the CLM needs to be expanded in terms of

depth of coverage. It should also capture any results from real-world successes

and failures regarding NOA.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

APPENDIX A. – SHARE REPOSITORY COMPONENT
SPECIFICATION: NEEDS ASSESSMENT

Jean Johnson
Naval Postgraduate School

jmjohnso@nps.edu

Introduction
The purpose of this paper is to lay the foundation for the Naval Postgraduate
School SHARE component specification and ontology research project funded by
Program Executive Officer, Integrated Warfare Systems (PEO-IWS). It is
intended for use as a communication vehicle between the stakeholders and
project performers to ensure congruence of goals and to validate requirements.
First, we characterize the problem domain by describing the Software, Hardware
Asset Reuse Enterprise (SHARE) repository, its contents and its unique
attributes. Based on this investigation, we then provide specific
recommendations for both near term and long term improvements. The near
term suggestions are essentially “low hanging fruit”, or ideas for quick
improvements that can be implemented in a relatively short time frame. The long
term improvements are associated with the benefits that can be realized once the
component specification and ontology have been implemented. Finally, we
outline requirements for the component specification in terms of its intended use
within SHARE.

Background
In August 2006, PEO-IWS established the SHARE repository to make available
combat system software and related assets to current and potential Navy
contractors [5]. SHARE is one piece of the Navy’s Open Architecture (OA)
approach to developing modular, open systems [6], which includes reusable
software applications as a core principle.

PEO IWS is currently seeking ways to improve and mature the capability
provided by SHARE. Among other initiatives, two related research projects are
in progress at NPS. The first, and the topic of this paper, will produce a
component specification framework and ontology for use in SHARE. The
component specification is essentially a model of the assets incorporated into the
repository, which will enable robust search and discovery capabilities, asset
submission assistance, and other repository functions. The ontology is a
framework for the relationships between components, providing contextual
meaning to asset descriptions. The second project will develop a prototype of a
semantically-based requirements search engine (ReSEARCH) with the tools
necessary to convert documents into semantically-based formal representations
of requirements [4].

 22

What is SHARE?
SHARE provides a capability for discovering, accessing, sharing, managing, and
sustaining reusable assets for the Navy Surface Domain’s programs [1]. SHARE
consists of an asset library and a card catalog. The asset library is a collection of
combat systems software and supporting artifacts. The card catalog is a web-
based interface that facilitates user insight into the contents of SHARE and
supports user functions including account registry, asset search and discovery,
asset submission assistance, and asset retrieval requests.

The SHARE asset library is separate from the card catalog for two primary
reasons. First, the majority of the contents of SHARE is classified material and
therefore must be kept in a SECRET or higher container. Second, the process
for retrieving assets from SHARE includes necessary steps for addressing the
data rights associated with each component. For most of the components, a
license agreement and Non-Disclosure Agreement are required before an asset
can be issued. Due to these restrictions, the web interface and the actual assets
are physically separated.

The search and discovery process in SHARE is conducted either through
individual navigation of the list of assets in the catalog (see Appendix B), or by
keyword search of more detailed descriptions. From the catalog list, a user can
select an asset for the detailed description, which consists of identity, description
and usage information if they are available. The identity information includes
asset point of contact, ID, name, version, type, editor and update information.
The asset description includes a free-text overview, classification level, export
control and distribution statements, current state of the asset, artifact types and
usage instructions. Usage information includes user agreement, subscriber, and
user information.

The metadata for assets is collected during the asset submission process via an
excel spreadsheet available on the SHARE user interface (see Appendix A).
Submitters download the spreadsheet and then email the completed form to the
SHARE helpdesk. This information includes not only contributor and asset
descriptions, but also begins to address the domain specific information by
identifying the asset’s tie to the generic architecture provided by the Surface
Navy OA Warfare Systems Architecture Element Level Decomposition.

Assets are requested from SHARE using an online interactive questionnaire.
The user is asked several basic questions, such as which assets are being
requested, the justification, and delivery information. The tool then prepares the
necessary documents, including non-disclosure and license agreements, and
provides them, along with instructions for printing and submission, to the user.
Once the documents have been mailed in to the SHARE administrators, the user
can track the status of the request online through the SHARE interface.

 23

The SHARE user interface also includes some administrative information such as
points of contact for the SHARE program, the list of registered users, a document
library, and a calendar. There is also a place where feedback can be posted.
However, this feature has not yet been utilized.

What is in SHARE?
The contents of SHARE are listed in Appendix B. Currently, SHARE includes the
software and supporting documentation for an Aegis Baseline (7.1.1.1), the
DDG1000 Total Ship Computing Environmental Infrastructure (TSCEI), and Ship
Self Defense System (SSDS) Mk 2 Mod 1. For the Aegis baseline, the source
code applications for all major subsystems with build files are included in the
repository, as well as prime item development specifications (PIDS), computer
program requirements specifications, interface design specifications (IDS), and
user manuals. The TSCEI assets include both documentation and source code.
SSDS submissions include the System/Subsystem Specifications (SSS),
Software Requirements Specifications, (SRS) and source code for major
subsystems. Additionally, the repository includes the Littoral Combat System
(LCS) Open Data Model, which provides the mission architecture for LCS [2].

What makes SHARE Unique?
Several aspects of the SHARE repository make it unique when compared to any
number of existing software repositories such as SourceForge [7] or Koders [3].
The first unique attribute is that the current artifacts incorporated in the database
are very similar. They are each large subsystems of combat systems for Navy
surface platforms. They have a similar level of granularity (very large and
complex), and they are all traceable to a subset of the Surface Navy OA Warfare
Systems Architecture Element Level Decomposition.

While this observation seems to point to trivial solutions for the repository,
consideration of the future of the repository yields a different perspective. A
primary realization is that the number of artifacts in the library will continue to
grow. At some point, the number of items alone will render the search and
discovery process difficult if not aided by visualization tools and robust search
engines. Furthermore, if the goal of enterprise wide repository-enabled software
reuse is to be realized, it is likely that the artifact characteristics will evolve over
time. As Open Architecture becomes a standard development approach, more
modular systems will be introduced. Once that occurs, it will be advantageous to
be able to identify and retrieve modules rather than subsystems. In other words,
active repository use is likely to stimulate more granular activity. Additionally, to
enable enterprise-level asset sharing, the repository must support the expression
of component capability and utility in a meaningful way across domains. It is also
important to note that SHARE is intended include hardware artifacts, although
these types of items are not currently included in the card catalog. In summary, it

 24

is expected that over time the artifacts in SHARE will both become more
heterogeneous, as well as be required to hold meaning among other more
heterogeneous artifacts.

Another unique characteristic of SHARE is that there is no immediate access to
assets in the repository. Due to the classification and data rights issues, we must
distinctly separate the tools used for search and discovery from the components
themselves. We cannot insist, for example, that the component specification
become part of the component as a wrapper and expect the tools to interface
with it directly. These classification and data rights issues force another
important consideration. Since one of the most cumbersome processes
identified for SHARE is the navigation of access authority and permissions for
component retrieval, solutions aimed towards improving the usability of the
repository should incorporate mechanisms for aiding in this process.

An additional distinguishing characteristic of SHARE is the part is plays in the
context of the Navy enterprise. Each of the items in SHARE represent “product
lines” in the surface domain, and the surface domain is a part of the larger Navy
enterprise. This framework provides contextual meaning to the assets and also
becomes the driving force for the desired relevance of tools developed for
SHARE. Where possible, it is desirable to incorporate the domain information
related to an asset to maximize its contextual meaning. Additionally, as tools are
designed, developers should consider their potential use in the larger enterprise
domain.

Recommendations for near term improvement
Throughout this initial research of the SHARE repository, we have identified
several relatively uncomplicated improvements. These improvements can be
implemented with the repository in its current state, before any fundamental
framework is put in place. We offer these suggestions for consideration by
SHARE leadership to enable near term enhancement of the capability. These
recommendations include improved use of the metadata, increased web-site
functionality, and SHARE education.

The current metadata collected for assets submitted in SHARE includes a free
text overview of the asset. These descriptions are currently the best tool that
users have to determine if the asset being considered is going to be valuable for
them to retrieve. However, these descriptions vary greatly in the information
provided. On one end of the spectrum, the descriptions provide an overview of
what the component does in the system as well as information to aid in its use.
On the other end, very little additional information is provided. In some cases,
the acronyms that are listed in the card catalog are simply repeated. Without a
better description, the user must already know a lot about the asset in order to
decide if it will be useful to them.

 25

Descriptions should be written with the assumption that the user does not already
know what item(s) they are seeking. This may be a difficult perspective for
program developers to take when writing summaries of their systems. Possibly,
a template should be provided for the types of information required for a
description in order to ensure that the appropriate level of detail is included. This
description should cover what the component does, its contribution to the overall
functionality of a system, and examples of how the component has been used,
both in the initial system and as a reused item. Another useful item for searchers
less knowledgeable about the various combat systems is an acronym list.

Several features that are popular in commercial search and discovery web
interfaces such as Amazon, Google, or Netflix may also be implemented in
SHARE to improve the utility of the repository. Customer reviews, frequently
asked questions, and tools for visualization are integral sources of information in
these web sites that could be useful in the SHARE environment as well.

The Amazon model for customer reviews could be beneficial to repository users
who have identified an item that looks interesting. Amazon posts the customer
ratings, a numeric assignment of quality, and also enables written feedback from
the customer. For SHARE, this feedback could be tailored to answer specific
questions that users would find useful. Customer feedback would include the
quality assessment of the items, a description of how the customer used the
component, and lessons learned regarding the item’s use. As in Amazon, the
SHARE tool could be set up to automatically distribute periodic emails requesting
customers to review items that they have retrieved.

Information visualization aids can help people quickly identify the items of interest
to them. A commonly used feature in commercial sites is the “People who
bought this, also bought…” feature. This quickly points users to items they may
not have been aware of, but may be relevant in solving their problem. Netflix
allows you to view the details about a video in a window that pops up
automatically when you move the cursor over a movie cover graphic. This
feature may be helpful in navigating SHARE by allowing the user to view the
detailed descriptions of components without having to click on them and wait for
the information to open. Another improvement that may help provide contextual
significance to repository items makes use of the reference architecture
information. Currently, the link between the component and the SNOA reference
architecture is collected at the time of asset submission. It may be a simple
implementation to build a search interface based on this mapping. As a search
option, the user could choose to display the architecture framework, and then
navigate to the components in the repository by clicking on the individual module
entities.

A Question and Answer (Q&A) blog could be tied to each the repository assets.
Users interested in an asset would post questions that they have about

 26

components that seem initially attractive, and asset owners post answers. Over
time, the Frequently Asked Questions (FAQ) can be collected for quick
reference. Also, FAQ’s may reveal a lack of critical information in a component
description, which can then be worked into the component metadata. The Q&A
blogs themselves may provide valuable information to users as well. The same
concept can also be applied to the SHARE repository overall.

Our final recommended near term improvement is less a technical solution than it
is a cultural solution. One of the reasons that existing examples of reuse are
successful is that people understand what they are reusing. We reuse our own
code, data structures, and design patterns because we already know them and
understand what they can do for us. To that end, education is critical. Before
beginning a browse or search, people should understand in general what kind of
information is available and how it can be used. This can be presented as a brief
write-up (similar to portions of this paper) or as a simple interactive tutorial. Real
examples of uses of SHARE would be valuable material to potential SHARE
users as well and should be included in the information provided.

The Long Term Vision
The goal of this research is to improve the development and use of software
repositories by developing a component specification designed for use in model-
based applications that greatly improve the effectiveness of a software
repository. We will develop a specification framework which includes a model of
the components in the repository as well as the relationships that provide
contextual meaning. The component models will be based on the behavior of the
component as well as examples of its uses, both within the original system and in
any situations where the component has been reused. The relationships may be
between components within the repository, between the components and a
reference or domain architecture, the component’s place in the software life cycle
and other relational information that will aid users in understanding the context of
the component.

This framework will enable tools to be developed that will maximize the utility of
the reuse repository. Two different types of tools have been identified that will be
necessary to make full use of the framework. The search and discovery tools are
aimed towards using the information captured in the framework to assist the user
in identifying and retrieving useful items from the repository. In general, it is
advantageous to provide multiple ways to search for relevant items so that users
can investigate the options differently depending on their background and current
needs. We envision both advanced visualization tools, such as a fish-eye graph,
to aid in this process as well as tools that enable searching from available
documentation (such as ReSEARCH). The second type of tool needed is tools
aimed at assisting component developers by minimize the overhead of creating
the component model and inserting it into the repository. One example is a
specification-building tool with a wizard-type interface that will assist the

 27

developer in creating the component specification as the component is
developed. Additionally, a tool is necessary for assistance at repository-
submission time to help the submitter integrate the component into the repository
by building the desired relationships.

The component specification framework will incorporate all of the information that
is collected through the existing efforts to collect SHARE metadata. This
includes both the information collected through the current excel sheet, as well
as any of the short term improvements implemented in the interim.

To support the continued and evolutionary use of the specification framework,
consideration throughout development of the specification framework will be
given to potentially changing aspects of SHARE as well as additional candidate
repositories. As discussed previously, it is likely that the items placed in SHARE
will evolve over time, from large subsystems to more granular modules. The
component specification should be able to support this evolution of the contents.
The framework will also be developed to support multiple repositories. While
portions of the framework will contain domain specific information, the structure
and non-domain specific portions should be easily portable to other repositories,
along with a systematic approach to completing the domain relevant portion.
Particular attention will be paid to existing DoD and other software repositories,
especially those under the umbrella of the Navy OA domains such as the PEO
C4I Net-centric Enterprise Solutions for Interoperability (NESI) repository. The
specification framework should also support the integration of these repositories
as intended by OA leadership.

Finally, it will be important to integrate the technical solutions provided by this
work into the larger effort to improve software reuse within the Navy/DoD.
Education, motivation and rewards are needed in order to stimulate the reuse
cycle. A structured, planned and effective education campaign for these
technical solutions as well as the entire domain repository effort is needed.

Requirements for component specification
Based on the initial investigation into SHARE as described in previous sections,
the requirements listed here for the component specification framework are
necessary to provide a solution relevant to the SHARE repository. These items
will be considered throughout the framework development.

1. Improved search and discovery capability – The central focus of the
specification framework is to facilitate the search and discovery process
for a repository. This includes not only ease of navigation through the
available components, but also completeness of the information. The goal
is to educate the user about the candidate components thoroughly enough
that the user knows what it is they are retrieving prior to going through that
process.

 28

2. Minimize overhead for component submission – Adding this capability to
the repository will come with tradeoffs. Items must conform to the
framework in order to be entered into the repository. The overhead to the
asset submitters should be minimized as much as possible to avoid disuse
due to unacceptable levels of difficulty. The specification framework will
support tools to aid the development of the component specification for an
asset and to assist integration into the repository.

3. Support multiple user perspectives – The component specification will

incorporate multiple views for aiding users to reason about which
components to retrieve. These perspectives include, but are not limited
to:

a. Domain specific reference architecture - Where possible, it is
desirable to incorporate the available system domain information
related to an asset to maximize its contextual meaning. This may
be pre-existing in the form of a reference architecture or some other
materials.

b. Examples of previous uses – Examples of the components
previous uses should be incorporated into the framework. This
includes the component’s use in the original system as well as any
available examples of its reuse in later systems. Both successful
and non-successful reuse examples can be included.

c. Intra-repository component relationships – The relationships of the
components in the repository to each other is also a useful view.
Items that have been used in the same system or used to perform
similar functions in different systems can be grouped together.
Additionally, the threads of components that have been reused and
reinserted back into the repository as part of a new system should
be traceable.

d. Life cycle activity information – Information about the life cycle
phase or activity that the artifact is intended to support is useful as
well. For example, a user may wish to search for all requirements
documentation for systems that perform similar functions to their
intended new system as a useful reference.

4. Support for security requirements – Due to the classified nature of the

assets in SHARE, the interface for search and retrieval must be kept
separate from the assets themselves. Therefore, the specification model
must support this constraint of separate locations. Additionally, the
metadata of classified elements must be constrained to unclassified
material, and possibly include pointers to classified descriptions.

5. Support for legal concerns – As discussed in the previous sections, one of

the primary difficulties specific to SHARE is the navigation of access
authority and permissions for component retrieval. Any solution provided

 29

must take into account these constraints and should incorporate
mechanisms for aiding in this process wherever possible.

6. Extensible to other domains – Since SHARE is part of a greater effort to

improve software reuse across the DoD, the component specification
framework should support this goal. To that end, the framework should be
extensible to the other domains under the Navy OA construct and will
support the integration of these capabilities. Additionally, as supporting
tools are designed, developers should consider their potential use in the
larger enterprise.

7. Scalable for repository evolution – The specification framework should

support the evolution of the repository, both from the perspective of the
expected growth in the number of components contained as well as the
progression towards less homogenous contents (smaller modules vs.
large subsystems, various asset types – design artifacts, documentation,
etc.). Additionally, the models should be capable of representing
hardware artifacts that may be included as assets in the repository in the
future.

8. Use of de facto standards – Wherever possible, implementation of the

component specification framework will employ de facto standards such
as the Unified Modeling Language (UML), Extensible Markup Language
(XML), or others in order to promote broader applicability of existing tools
as well as open an unbiased competition for tools to be developed.

Future Work
This paper is the first in a series of intermediate products related to the
development of the component specification and ontology. Future writings will
cover the results from an ongoing survey of SHARE users and other feedback
that has been collected, case studies outlining success and failure stories, and
intermediate deliverables supporting the larger task. Near term research
activities will be focused on existing research and practical applications of
repository submission procedures, repository management tools, component
specification, and model driven software development (particularly, what models
are used during various phases of software development) to determine if there
are existing solutions that will be relevant in accomplishing the goals of the
project.

 30

References

[1] Belcher, M., “PEO IWS Software Hardware Asset Reuse Enterprise

(SHARE)”, Information brief, 2007.

[2] Fein, Geoff, “Navy’s SHARE Repository Seeing Steady Growth in First Six

Months”, Defense Daily, Feb 2007.

[3] Koders, www.koders.com, accessed 7 Oct 07.

[4] Martel, C., “ReSEARCH: A Requirements Search Engine”, proposal for

Future Combat Systems Open Architecture, 2007.

[5] PEO-IWS Library, Software, Hardware Asset Reuse Enterprise (SHARE)

Special Notice DON-SNOTE-070206-005, 6 Feb 07

[6] SHARE Home Page,

https://viewnet.nswc.navy.mil/PNB/share/share.nsf/homepage?openform,
accessed 7 Oct 07.

[7] SourceForge, www.sourceforge.net, accessed 8 Oct 07.

 31

Acronyms

IDS Interface Design Specification

LCS Littoral Combat System

NESI Net-centric Enterprise Solutions for Interoperability

NPS Naval Postgraduate School

PEO IWS Program Executive Officer, Integrated Warfare Systems

PEO C4I Program Executive Officer, Command, Control,
Communications, Computers and Intelligence

PIDS Prime Item Development Specification

ReSEARCH Requirements Search Engine

SSDS Ship Self Defense System

SRS Software Requirements Specifications

SSS System/Subsystem Specifications

SHARE Software, Hardware Asset Reuse Enterprise

TSCEI Total Ship Computing Environmental Infrastructure

UML Unified Modeling Language

XML Extensible Markup Language

 32

Appendix – SHARE Asset Contribution Form

UNCLASSIFIED

SHARE Asset Contribution v6

Complete the yellow areas below, and return to:
HelpDesk@Nice-Help.net, with cc: to
melody.belcher@navy.mi, and gregory.hartwig@navy.mil
(Items with gray-fill labels will not be published)

SHARE Control Number:
(assigned by Help Desk)

Asset Name:
Asset Description:

Request Date:
Name:

Phone:

E-Mail ID:
Organization:

Contributor:

Mailing Address:
Program Title:

Name:
Phone:

E-Mail ID:
Organization + Code:

Government Major Program
Manager (MPM):

Approval:
Name:

Phone:
E-Mail ID:

MPM Alternate:

Organization + Code:
Rationale for Contribution:

Impacts:
Asset Type: Sub-Type: Populate one selection below with a description

of the type of asset
System
Application Program
Package

Asset:

 Tactical Application

System Service

 33

Component(s)
Library
Module/Code Fragment
Database / Data Files
Framework
Tools / Utilities

Development Support

Test Tools/ Environments

Enterprise Framework
Data Architecture
Pattern / Design /
Algorithm

Non-code

Standard / Interface / API
New, Modified, or Linked:

Dependencies on other
assets, COTS, etc.

Version:
Description:

Date of Asset:
Target OS:

Acquisition or Final?
Test Level:

Certification Level:
OACE Level (self

assessment):

OAAT Level (self
assessment):

Complete?
Buildable?

Planned Updates:
Usage Instructions:

Types of artifacts included within the asset:
 Included? (Y/N) Format (e.g., DOORS, MS-Word, etc.)

Requirements
Specification:

Requirements:

Requirements Database:
Design Models Design:

Design Documents:

 34

Patterns:
Algorithms:

White Papers:
Data Models:

Simulation Models:
Source Code:

Compiled Libraries:
Code:

Executable Programs:
Test Plan:

Test Procedures:
Test Results:

Test Tools/Scripts:
Test Source Data Files:

Test Truth Data:

Test:

Simulators:
IRSs/IDDs

IDSs
Interface:

APIs
Architecture Model: Architecture:

Architecture Document:
User Documentation:

Training Documentation:

Build Scripts/Instructions:

Supporting Artifacts:

Other:
Software Programming language and Operating System(s) Supported

Pgm Language(s):

Run time Environment(s):
Security Classification:

Program's Security
Classification Guide ID#:

Has MPM pre-approved
classification release

authority?

Media Format:
Number of Files:

Structure of Files:

Media Description:

Total Data Size:

 35

Element Applic.? (Y or blank) Notes

Middleware/OS
Host Application

Infrastructure Services
Intelligence

Track Management
Common C2 Services

Operational C2
Tactical C2

Mission Planning
Resource Management

NTM Tasking/Status
Common Display Services

Common Operator
Displays (e.g., GUIs)

Plaform Specific Operator
Displays

Plaform Specific Display
Devices

Local & Offboard Sensor
Control

Sensor Adaptation
Sensor

Sensor Stimulation /
Simulation

Communications Control
Communications

Adaptation

Communications Devices
EXCOMM Simulation /

Stimulation

Off-board Organic Vehicle
Control

Off-board Organic Vehicle
Adapation

Architectural Elements (check

all that apply):

Off-board Organic Vehicle

Microsoft
PowerPoint Slide

 36

Vehicle Simulation /
Stimulation

Weapon Control
Weapon Adaptation

Weapon
Weapon Simulation /

Stimulation

Specialized Trainer
Ship Control

Computing Hardware
Engineering / Damage

Control

Readiness / Support
Adaptation

Training Control
Training Assessment

Training Dev. Env.
Readiness / Support

Distribution Statement:
Data Rights Markings:
Commercial Software:

Special Licenses:
Open Source Software

Licenses:

Data Rights Assertions:
Any Additional Information:

 37

Appendix – SHARE Contents (as of 07 Oct 07)

Name State Type POC Version
AEGIS
A-spec: WS-21200/5 SCN 1 Available Documentation Andy Li 7.1.1.1
B1-specs: ACTS WS-33417/2 Available Documentation Andy Li 7.1.1.1
B1-specs: ADS WS-10666/4 Available Documentation Andy Li 7.1.1.1
B1-specs: C&D WS-21208/6 Available Documentation Andy Li 7.1.1.1
B1-specs: FCS WS-10521/7 Available Documentation Andy Li 7.1.1.1
B1-specs: ORTS WS-10523/10 Available Documentation Andy Li 7.1.1.1
B1-specs: SPY WS-10520/10 Available Documentation Andy Li 7.1.1.1
B1-specs: WCS WS-10522/9 Available Documentation Andy Li 7.1.1.1
B5-specs: TCP WS-33419/2A
VOL 1-2 Available Documentation Andy Li 7.1.1.1
B5-specs: ADS WS-21366/4A
VOL 1-41 Available Documentation Andy Li 7.1.1.1
B5-specs: C&D WS-21240/4A
VOL 1-28 Available Documentation Andy Li 7.1.1.1
B5-specs: FCS WS-10557/12A Available Documentation Andy Li 7.1.1.1
B5-specs: ORTS WS-21234/6A Available Documentation Andy Li 7.1.1.1
B5-specs: SPY WS-10554/16A
VOL 1-3 Available Documentation Andy Li 7.1.1.1
B5-specs: WCS WS-10555/17A
VOL 1-6 Available Documentation Andy Li 7.1.1.1
IDS-specs: NAV/AWS S9427-
AN-IDS-020/WSN-7 Available Documentation Andy Li

7.1.1.1 (31
July 1997)

IDS-specs: WCS/SPY WS-
19632/10A Available Documentation Andy Li 7.1.1.1
IDS-specs: SPY/SPY SIG PRO
WS-19634/8A Available Documentation Andy Li 7.1.1.1
IDS-specs: FCS/FCS DCC WS-
19640/4A Available Documentation Andy Li 7.1.1.1
IDS-specs: ORTS/WCS WS-
19644/10A VOL 1-2 Available Documentation Andy Li 7.1.1.1
IDS-specs: ORTS/SPY
19646/12A Available Documentation Andy Li 7.1.1.1
IDS-specs: WCS/LAMPS WS-
19657/1 Available Documentation Andy Li

7.1.1.1. (01
Mar 2000)

IDS-specs: ACTS/SPY WS-
19681/8A Available Documentation Andy Li 7.1.1.1
IDS-specs: ACTS/WCS WS-
19682/10A Available Documentation Andy Li 7.1.1.1
IDS-specs: ADS/ORTS WS-
21267/2A VOL 1-2 Available Documentation Andy Li 7.1.1.1
IDS-specs: ADS/C&D WS-
21272/2A VOL 1-2 Available Documentation Andy Li 7.1.1.1
IDS-specs: ORTS/ACTS WS-
21278/2A Available Documentation Andy Li 7.1.1.1
IDS-specs: ADS/ACTS WS-
21286/2A Available Documentation Andy Li 7.1.1.1
IDS-specs: ORTS/SCA WS-
21287/1A Available Documentation Andy Li 7.1.1.1

 38

IDS-specs: ACEG/AP WS-
21288A PT 1-5 Available Documentation Andy Li 7.1.1.1
IDS-specs: AP/AOCD WS-
21290/1A Available Documentation Andy Li 7.1.1.1
IDS-specs: SPY/C&D WS-
21327/8A Available Documentation Andy Li 7.1.1.1
IDS-specs: C&D/WCS WS-
21328/7A VOL 1-2 Available Documentation Andy Li 7.1.1.1
IDS-specs: ORTS/C&D WS-
21329/6A Available Documentation Andy Li 7.1.1.1
IDS-specs: ACTS/C&D 21338/7A
VOL 1-2 Available Documentation Andy Li 7.1.1.1
S/W: Aegis C&D source code Available Application Andy Li 7.1.1.1
S/W Aegis FCS source code Available Application Andy Li 7.1.1.1
S/W Aegis WCS source code Available Application Andy Li 7.1.1.1
S/W Aegis SPY source code Available Application Andy Li 7.1.1.1
Aegis Quick Reference Guides
(QRGs) Available Documentation Andy Li 7.1.1.1
Aegis Interface Design
Specifications (IDSs) Available Documentation Andy Li 7.1.1.1
Aegis Interface Design Specs /
ACD-9072_3 Available Documentation Andy Li 7.1.1.1
Aegis Interface Design Specs /
WS-10512-2A Available Documentation Andy Li 7.1.1.1
Aegis Reusable Components
(ARC) User Manuals Available Documentation Andy Li 7.1.1.1
S/W: Aegis C&D build/support
files Available Code Andy Li 7.1.1.1
S/W: Aegis Reusable
Components (ARC) Available System Service Andy Li 7.1.1.1
DDG 1000
TSCEI 4.1 Documentation Acquisition Documentation Tom Kostyo 4.1
TSCEI 4.1 Source Code Acquisition Application Tom Kostyo 4.1
TSCEI 4.2.2 Documentation Acquisition Documentation Tom Kostyo 4.2
LCS
LCS Data Model 2006-11-22 Acquisition Architecture/Design Belcher_MelodyS 11/22/2006
LCS Open Data Model Package
- 5/22/2007 Acquisition Architecture/Design NA 3/20/2007
SSDS
SSS: SSDS MK 2
System/Subsystem Specification Available Documentation Andy Li MK 2 Mod 1
SRS: Display Services Available Documentation Andy Li MK 2 Mod 1
SRS: Human Machine Interface Available Documentation Andy Li MK 2 Mod 1
SRS: Infrastructure Services (IS) Available Documentation Andy Li MK 2 Mod 1
SRS: Tactical Operations (TO) Available Documentation Andy Li MK 2 Mod 1
S/W: Tactical Operations
Function Available Application Andy Li MK 2 Mod 1
S/W: OL Available Application Andy Li MK 2 MOD 1

 39

APPENDIX B– SOFTWARE REUSE IN THE NAVAL OPEN
ARCHITECTURE

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

LIST OF REFERENCES

Estublier, J. and Vega, G., “Reuse and variability in large scale applications,” in
Proceedings of the 10th European Software Engineering Conference,
ACM, Lisbon, Portugal, Sept. 2005, pp. 316-325.

Griss, M. L. and Wosser, A., “Making Reuse Work at Hewlett-Packard,” IEEE

Software, Jan. 1995, pp. 105-107.

Guertin, N., Presentation to the DoD Open Technology Conference, Arlington,

VA, March 14, 2007.

McIlroy, M.D., “Mass produced software components,” in Naur, P. and Randell,

B., eds., Report on the NATO Conference on Software Engineering,
NATO Scientific Affairs Division, Brussels, Belgium, 1968, pp. 138-150.

Pepe, M., “Governments reduce, reuse, recycle code.” CRN 23 Jul 2001: 57-58.

URL: http://www.crn.com/government/18815117 [last accessed April
2008].

Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., and Schach, S.R., “Evaluating

Software Reuse Alternatives: A Model and its Application to an Industrial
Case Study,” IEEE Transactions on Software Engineering, 30, 9, Sept.
2004, pp. 601-612.

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. CAPT Red Hoover
SSC Charleston
Charleston, SC

4. CDR Scott Heller
SSC Charleston
Charleston, SC

5. Dr. Bret Michael
Naval Postgraduate School
Monterey, CA

6. Dr. Man-Tak Shing
Naval Postgraduate School
Monterey, CA

